首页> 外文OA文献 >Large-Eddy Simulation of Stably Stratified Atmospheric Boundary Layer Turbulence: A Scale-Dependent Dynamic Modeling Approach
【2h】

Large-Eddy Simulation of Stably Stratified Atmospheric Boundary Layer Turbulence: A Scale-Dependent Dynamic Modeling Approach

机译:稳定分层的大气边界层湍流的大涡模拟:一种与尺度有关的动态建模方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A new tuning-free subgrid-scale model, termed `locally-averaged scale-dependent dynamic' (LASDD) model, is developed and implemented in large-eddy simulations (LESs) of stable boundary layers. The new model dynamically computes the Smagorinsky coefficient and the subgrid-scale Prandtl number based on the local dynamics of the resolved velocity and temperature fields. Overall, the agreement between the statistics of the LES-generated turbulence and some well-established empirical formulations and theoretical predictions (e.g., Nieuwstadt's local scaling hypothesis) is remarkable. The results show clear improvements over most of the traditional subgrid-scale models in the surface layer. Moreover, in contrast to previous large-eddy simulations of stable boundary layers that have strong dependence on grid resolution, the simulated statistics obtained with the LASDD model show relatively little resolution dependence for the range of grid sizes considered here. In essence, we show that the new LASDD model is a robust subgrid-scale parameterization for reliable, tuning-free simulations of stable boundary layers, even with relatively coarse resolutions.
机译:开发了一种新的免调整子网格比例模型,称为“局部平均比例依赖动态”(LASDD)模型,并在稳定边界层的大涡模拟(LESs)中实现。新模型根据解析速度和温度场的局部动力学动态计算Smagorinsky系数和亚网格规模的Prandtl数。总体而言,LES产生的湍流的统计数据与一些公认的经验公式和理论预测(例如Nieuwstadt的局部尺度假设)之间的一致性非常显着。结果表明,与大多数传统的子网格规模模型相比,表层具有明显的改进。而且,与以前的对边界分辨率有很强依赖性的稳定边界层的大涡模拟相比,用LASDD模型获得的模拟统计数据显示了此处考虑的网格尺寸范围相对较小的分辨率依赖性。从本质上讲,我们表明,新的LASDD模型是可​​靠的,无需调整的稳定边界层仿真的可靠子网格规模参数化,即使分辨率相对较高。

著录项

  • 作者

    Basu, S; Porté-Agel, F;

  • 作者单位
  • 年度 2005
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号